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Self-replicating pulses and Sierpinski gaskets in excitable media
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In our previous papers, we have shown by computer simulations that a Sierpinski gasket pattern appears in
a Bonhoeffer—van der Pol type reaction-diffusion system. In this paper, we show another class of regular
self-similar structure which is found in four different excitable reaction-diffusion systems. This result strongly
implies that the existence of the self-similar spatiotemporal evolution is universal in excitable reaction-
diffusion media.

PACS numbgs): 82.40.Bj, 05.45-a, 82.20.M;j

[. INTRODUCTION The purpose of this paper is to explore how generic the
formation of a regular self-similar pattern is. We will show
Recently, a rich variety of pulse dynamics have beerthat a pattern like Fig. 1 is not an exceptional one for a
found in nonlinear open systems. First of all, computer simu{particular set of reaction-diffusion systems. In four different
lations of several reaction-diffusion systems have revealethodel systems, a self-similar pattern equivalent to @&g.
that a propagating pulse is stable upon collision with anothewith k=2 will be obtained. The results definitely suggest
pulse, that is, a pair of counterpropagating pulses undergodbat the existence of a self-similar spatiotemporal evolution
an elasticlike collisiof1—4]. It is also possible that a pulse is universal in excitable reaction-diffusion media.
pair is deformed during collision but survives again just like This paper is organized as follows. In Sec. Il, we intro-
a soliton in an integrable nondissipative systg#b]. It is  duce the Bonhoeffer—van der P¢BvP) type reaction-
noted that these unexpected behaviors in nonlinear dissipahffusion system with a cubic nonlinear term. It is shown that
tive systems occur only in a limited region of the parametersboth the traveling pulse and the breathing pulse undergo self-
For most of the parameter region, pulses annihilate uporeplication, which causes generally complex spatiotemporal
collision as is usual in a dissipative system. patterns. However, we show that, if one tunes the param-
Another interesting property of pulses is self-replication,eters, SG withk=2 emerges.
which has been observed not only in computer simulations In Sec. lll, we investigate the BvP model with a hyper-
but also in a real experimefif]. In the Gray-Scott model, a bolic tangent nonlinear term. An SG wik+3 in Fig. 1 was
motionless pulse splits into two pulses which grow and regenerated by this modgb,10]. We show, however, that for
peat self-replication until the density of pulses is sufficientlydifferent values of the parameters an SG with 2 is also
large [1,8]. A propagating pulse can also self-replicate inrealized in this model.
which a daughter pulse is emitted, known as a backfiring In Sec. IV, we carry out numerical simulations of the
phenomenomnl,9]. Gray-Scott model and obtain an SG wkk 2. In Sec. V, we
It is important to note that these three basic properties oinvestigate the Prague model, which was introduced to study
pulses—pair annihilation, preservation upon collision, andself-replicating waves observed in the Belousov-Zhabotinsky
self-replication—can coexist in a small but finite parameter
region. In this situation, we have shown in previous papers

[6,10] that the interplay among the three properties causes a 500 v?%v \'\5’\;5&%’? \(,\Ov\(,\ov
regular self-similar spatiotemporal evolution of a trajectory \'\/\5)) Yy \’\,\5)’
of pulses as shown in Fig. 1. Preservation is possible only for WW%“\%W
completely symmetric collision. As a result, the same pulse AN AN
trajectory is generated every three generations. This is iso- v hoA VAR O o
morphic to a Sierpinski gaskéSG) generated by a cellular RS 1% pod
automation, \%jvwv%y
%
t+1iy — at(i ti fead
a'"(i)=a'(i—-1)+a'(i+1), mod k, (1) ¢ 9
0 4
wherea'(i)=0,1, ... k—1 is defined on a one-dimensional 0 2500
X

lattice. The pattern in Fig. 1 corresponds to the dass.

It is mentioned here that Meinhardt has also been con- FiG. 1. Spatiotemporal pattern of interacting pulses in the BvP
cerned with a connection between reaction-diffusion systemgodel equations with a hyperbolic nonlinear term where0.1,
and cellular automata in his study of biological pattern for-y=0, §=0.05,7=0.34,1=0, D,=10, andD,= 1. The lines indi-
mation such as sea she[l$1] where, however, no perfect cate the contour line ai=0.2. The quantities in this and all other
fractal structure has been obtained. figures below are dimensionless.
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FIG. 2. The phase diagram in ther plane. 1=0.17=0.59 (r,=0.60). The lines indicate the profile af

reaction[12]. Numerical simulations of this model show that ¢ jication of pulses is observed and hence rich varieties of

an SG withk=2 exists in a small parameter region. In all of spatiotemporal patterns appear as described below.

the simulations in Sec. II-V, the Neumann boundary condi-
tions are used at the system boundaries. Finally, in Sec. VI, B. Self-replication of pulses
we give a discussion of our results. ' P P

We have carried out numerical simulations of E@$.and

Il. BVP MODEL WITH A CUBIC NONLINEARITY (3) with Eq. (4) in the regionr, <7< 7, shown in Fig. 2. The
_ time mesh is 0.001 while the space mesh is 0.25.
A. Model equation We provide a stable breathing pulse &t 7, and then

In our previous paper6,10,, we have reported that a change Fhe parameterto 7=y The result forl =0.2 and
regular self-similar spatiotemporal pattern like an SG ap-r=0.53 is shown in Fig. @), where one can see that a pulse
pears in Bonhoeffer—van der Pol type reaction-diffusionPreathes for a finite time and vanishes by collision of two

equations, interfaces of the pulse.
However, wherl is close to the Hopf bifurcation thresh-
Ju d%u old I, a breathing pulse splits into two pulses. An example
7§:Duﬁ+f(“)_v' (20 is shown in Fig. &) for 1=0.1 and==0.59. It is evident
that when the width of the breathing pulse becomes maxi-
ov P mum, the value ofu in the middle of the pulse decreases
e Dvﬁ—xz +u—yv+l, (3) rapidly so that replication occurs.

The long-time behavior of simulations of Fig(l3 is
shown in Figs. 4a) and 4b), which display spatiotemporal

. evolutions of pulses. In Fig. (@ for 7=0.59, breathin
respectively. The parametets y, and| are assumed to be P 9. @ T g

ulses disappear after a few times of self-replicating. When
positive. In this section, we shall explore the pulse dynamic£:0 58 Figp4b) shows that breathing puls?es rep?aat the
of the BvP model2) and(3) with the cubic nonlinearity o .

self-replicating process without extinction so that the number
of pulses increases in time.

A traveling pulse forr= 7, behaves similarly. We pro-
vide a pulse forr=7,. This pulse propagates for some finite
[hterval after an abrupt increase ofarger thanr,. During

whereD,>0 andD,>0 are the diffusion rates af andv,

f(w=au(u+1)(1—u), (4

wherea is a positive constant. The parameters are chose

such that the system Eq&2) and (3) Wit_h Eg. (f) is e)iCit' propagation, the pulse changes its shape to a symmetric form
able. Throughout this section, we @5_1' D,=10,a=5, 304 then either vanishes or self-replicates depending on the
and y=0.25, and examine the behavior of pulses by Changbarameters. Whehis much larger than,,, the pulse van-

ing the values ofr andl.

In the spatially homogeneous case, the set of Ejjsand
(3) with Eq. (4) has a subcritical Hopf bifurcation poirht @
=, such that a limit cycle solution appears wheqal,,. 300" s00
Our concern is the case-|,, where the system is excitable. ‘

Equations(2) and (3) with Eq. (4) have been studied in
detail theoreticallyf13—15. As shown in Fig. 2, there are
three bifurcation points by changing the parameter®A
traveling pulse is stable for<r,, while a motionless pulse o
is stable forr>7,,,. In the present choice of the parameters, 18

(b)

time
time

7o Is always smaller tham,,. The dependence of, and 7,
on | is schematically shown in Fig. 2. There is another spe-

0 ii 0

cial valuer, such that a motionless pulse loses stability and " , X 1600 0 X 1600
undergoes a breathing motion in the intervgk 7<<r,.
It should be noted that there is an intervgj<7<r, FIG. 4. Spatiotemporal pattern fofa) r=0.59 and(b) =

where neither the breathing pulse nor the traveling pulse ex=0.58. Other parameters are the same as those in Hiy. Bhe
ists as a stationary state. This is the very region where selfines indicate the contour line af=0.
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FIG. 5. Self-replication of a traveling pulse f¢s) 1=0.37 FIG. 7 Self_-replication of a pulse in the BvP model with a
=0.28 (r,=0.27) and(b) 1=0.17=0.44 (7,=0.43). The lines hyperbolic nonlinear term. The parameters & «=0.1, y=0,
indicate the contour line afi=0. 0=0.05, 7=0.34,1=0, D,=10, andD,=1; (b) «=0.105, y

=0.21,6=0.05,7=0.4,1=0,D,=10.5, andD,=1.
ishes as shown in Fig(8) for | =0.3 andr=0.28. When is . - .
close tol.  self-re gIJic(:i)tion 0CCUTS asT in Fig.(& for | However, we have verified that the SG in FigbBsurvives
—o01 andh,zo 24 P 9: even for initial conditions deformed by noise. Furthermore,
F.i ure T(ia). sHows a spatiotemporal pattern of self- an asymmetric initial profile like a traveling pulse also pro-
9 P P P .duces the same SG. It seems that any localized pulse whose

re_pllcatmg tra\_/e.h_ng pulsg_s fo.r the same parameters as Ipnagnitude is larger than a certain threshold produces the SG.
Fig. 5b). The initial condition is a motionless pulse gener- The SG in Fig. 60) exists in the parameter region 0.49

ated forr=1. It can be seen that self-re_phc_atlon of travellr_1g_<7_$o_50 with the other parameters fixed as in Figa)6
pulses occurs irregularly. The self-replicating pulses annihi-

- . Outside of this region, the self-similarity does not last indefi-
late or reflect upon collision so that an apparently chaotic

spatiotemporal pattern appears. r;ieéy;is shown in Fig. @) for 7=0.48 and in Fig. &) for

We have also examined collision of two SG domains.
Figure Ge) displays the result where we start with the same
When the value ofr is in the middle of the region, ~ parameters as in Fig(l§). The SG is generally destroyed by
<1<, for I=l,, we obtain a regular self-similar pattern as the collision causing complicated evolution of pulses. Only
shown in Fig. 6b). Here, we have used the same initial con-when two pulses are at a particular distance initially is the
dition as in Fig. 6a). SG preserved after collision.
Note that the SG in Fig.(®) differs from Fig. 1. The most We make a final remark that a regular pattern also
crucial property is that preservation of pulses does not existmerges in the intervat,<7<r, although it is not self-
in Fig. 6(b). All of the pulses undergo pair annihilation upon similar. One example is shown in Fig(fgfor a=4 andy
collision so that the same trajectory of the pulses appears:0.3 and for the initial conditioru(x,0)=2 expx3)-+u
every two generations. The SG in Fighbis equivalent with  andv(x,0)=uv, with the equilibrium uniform values, and
Eq. (1) with k=2. vo. After an initial transient, the system enters a cycle in
The SG in Fig. &) is robust in comparison with other which a branched pattern is generated repeatedly.
irregular spatiotemporal patterns. For example, the pattern in

Fig. 6(a) is not reproduced when we add a noise to the initial |j]. BvP MODEL WITH A HYPERBOLIC TANGENT
conditions and thus it is sensitive to the initial conditions. NONLINEARITY

C. Regular self-similar patterns

In the preceding section, we have obtained an SG with
k=2 in the excitable systeit2) and(3) with Eq. (4). This is
quite in contrast to our previous result that an SG wkith
=3 was obtained in Eq$2) and (3) with a hyperbolic tan-
gent nonlinearity,

where a and 6 are positive constants. The essential differ-
ence is that Eq92) and(3) with Eq. (5) are bistable in the
sense that a stable uniform solution and a stable limit cycle
; ‘ ‘ , solution coexis{6,10,16.
o5 60 0 v a6 s Y1600 In this section, we will show that an SG wik=2 can be
realized even for the hyperbolic tangent nonlinearity. When
FIG. 6. Spatiotemporal pattern f¢éa) r=0.44,(b) 7=0.50,(c)  ¥=0 in Eq.(3), the system is bistable in the above sense and
7=0.48, and(d) 7=0.51. (¢) Collision of two SG's starting with @ pulse self-replicates as shown in Figa)7 where a pulse
two pulses ak=600 and 1000. The parameters are the same as iRecomes small for a short perigd7] and survives again
Fig. (b). (f) Periodic pattern forr=0.34,1=0.15,a=4, y=0.3,  splitting into two pulses. The SG witk=3 in Fig. 1 was
D,=1, andD,=10. The lines indicate the contour line vf 0. obtained in this situatiof6]. On the other hand, whemy

time
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FIG. 8. (a) SG withk=2 for the BvP model with a hyperbolic
nonlinear term. The parameters ake=0.105, y=0.21, §=0.05,
7=0.4,D,=10.5, andD,=1. The lines indicate the contour line of
u=0. (b) SG withk=2 for the Gray-Scott model. The parameters
are F=0.0253,k=0.0525,D,=1.15x 10 %, andD,=1.0x10"°.
The lines indicate the contour line a=0.5.

=0.21 and7=0.4, a pulse self-replicates as in Figh) It
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chaotic pattern emergd®0]. We carry out simulations of
Egs.(6) and (7) in this parameter region but with a slightly
different value ofD, andD, . Actually, in Ref.[20], these
are setto b®,=2x10 °andD,=10"°. We could not find
any SG for these values of the diffusion constants. In the
present study, we chos®,=1.15<10 ° andD,=10"°. As
shown in Fig. 8b), we obtain an SG withk=2 for F
=0.0253 andk=0.0525. The same SG is obtained 0,
=1.16x 10 ° without changing the other parameters. The
initial condition is such thau=0.5 andv=1 just at the
center of the system andg=1 andv =0 otherwise. The time
mesh is 0.1 and the space mesh is 0.01.

The SG shown in Fig. ®) corresponds to a cellular au-
tomaton(1) with k=2. A question arises whether an SG with
k=3 is possible in the Gray-Scott model or not as in the BvP
model with a hyperbolic tangent nonlinearity. A necessary
condition for an SG withk=3 is the coexistence of pair
annihilation, self-replication, and preservation of pulges.

We have confirmed that there is a parameter region in the
Gray-Scott model where these basic properties coexist. How-
ever, we have not succeeded in realizing an SG Witl8 in

should be noted that this behavior of self-replication is qualitye Gray-Scott model. This is due to the fact that the interval

tatively different from that in Fig. (& but quite similar to
those in Figs. @) or 5(b).

during a collision(phase shift is substantially longer than
that of self-replication. This unbalance of the two time inter-

We have carried out numerical simulations of E@s.and yals makes the formation of SG wit=3 impossible. On
(3) with Eq. (5) in the parameter region where the self- the other hand, in the BvP equation with a hyperbolic non-
replication occurs as in Fig.(). Other parameters are cho- |inearity, these two time intervals are almost the same so that

sen to be almost the same as the SG Wit8. An SG with 5 self-replication repeats coherently with preservation at each
k=2 is really obtained as shown in Figig The time mesh  generation.

is 0.001 and the space mesh is 0.125 for these computations.
Thus, we have obtained two SG’s wik+2 as in Figs.
6(b) and 8a). However, it is remarked that there is a small

difference in these figures. By looking at the contour lines of  The fourth example of an excitable system where an SG

u, one notes that a pulse in Fig(bp splits into two during  appears is the following two-component reaction-diffusion
the first breathing oscillation whereas a pulse in Fi(Q) 8 model:

self-replicates during the second oscillation.

V. PRAGUE MODEL

ou Ju 1 v+b
IV. GRAY-SCOTT MODEL Tt 2 T eulemut(1-cju]ju- , (8
In Secs. Il and Ill, we have shown that SG’s wkk- 2
appear in the BvP model having two different nonlinear v &%
terms. Here, it will be shown that an SG emerges in the a_t:D(;_XZJFU_U! ©

Gray-Scott model given by the following set of equations:

Ju 2u whereD >0 is the diffusion coefficient and, b, g ande are

—=Dy——=—Uuv?+F(1-u), (6)  positive constants. We call this model the Prague model.
ot IxX Marek et al. [12] have introduced Eqs(8) and (9) to

5 study numerically the splitting of a reduction wave in the
dv Jv Belousov-Zhabotinsky reaction. They have found that self-
D — 2_
at Dvaxz +uv®=(F+ko, @) replication of pulses occurs fa=0.99, b=0.01,c=0.2,

D=1, ande=0.01. Here, we investigate the behavior of the
whereD,>0 andD,>0 are the diffusion coefficients. We Prague model by changing the valuesdfand e. An SG
assume thaF andk are positive constants. with k=2 appears fob =1.2 ande=0.009 as shown in Fig.

Self-replication of a pulse in the Gray-Scott model has9(a). The initial condition isu(x,0)=exp(—x?) and v(x,0)
been studied both numerically and analyticdlly8,18,19. =0. The time mesh is 0.001 and the space mesh is 0.25.
However, the spatiotemporal evolution of the interacting When the diffusion constam in Eq.(9) is decreased, one
pulses has not attracted much attention because almost all b&s an entirely different pulse dynamics. Pulses do not un-
the previous studies focused on the parameters such thdergo pair annihilation upon collision. For instance, when
there is a repulsive interaction between pulses. Hence, the=0.5(and e=0.01), we have the spatiotemporal evolution
system approaches a time-independent state asymptoticallyn Fig. Ab) where preservation of pulses is repeated so that a

It has been found, however, that there is a small region ofegular periodic pattern is formed. This pattern corresponds
the parameters where pulses annihilate upon collision and @ the cellular automatofil) with k=,
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(2) (b) [1,8] and an exothermic reaction-diffusion model.
(v) A pulse becomes very small and then two pulses
e ﬁf}g emerge. This type of self-replication occurs in the BvP
s model with a hyperbolic tangent nonlinearity as shown in
Fig. 7(a) and is an origin of SG in Fig. 1.

At present, theoretical analysis of these self-replications
has not been developed. Therefore, we do not exclude the
possibility that some of the above classes can be related with
each other and be unified eventually.

We have classified five types of self-replication in
3 \ reaction-diffusion systems. It should be mentioned, however,
0 1600 0 1600 that even when a self-replication occurs, a spatiotemporal
pattern does not always become an SG. A key factor for an

FIG. 9. () SG withk=2 for the Prague model. The parameters SG Withk=2 is the successive appearance of the same self-
area=0.99,b=0.01,c=0.2,D=1.2, ande=0.009.(b) Spatiotem-  r€plication. This can be understood by looking at Fifz)6
pora| pattern for the Prague model. The parameteraa@lggyb Where an SG iS not generated. One notes that the contour Of
=0.01,c=0.2,D=0.5, ande=0.01. The lines indicate the contour the pulses at either end gradually changes in time. In order
line of u=0.2. for an SG to be realized, pulses generated by self-replication
must obey the same dynamic motion as the mother pulse.
This is the reason why one has to tune the parameter to
produce an SG.

In this paper, we have shown by numerical simulations As was mentior_led in the Introduction, a related §tudy has
that a Sierpinski gasket pattern wkhk-2 can be produced in been dpne by Memharcﬂtll]. However, we emphas!ze that.
four different excitable reaction-diffusion systemgi) the the various beguuful shell pattern; obtained by Meinhardt in
BvP model with a cubic nonlinear terrfii) the BvP model reaction-diffusion systems are neither perfectly regular nor

with a hyperbolic tangent nonlinear teriii ) the Gray-Scott self-similar. What we have shown in the present paper is that

model, and(iv) the Prague model. We expect from theseexcitable reaction-diffusion systems are capable of generat-

results that the SG is very common to excitable méa. ing a regular se!f-simi!ar spatiotemporal pattern. This implies
It is definite that an SG cannot be realized without self-that' from the viewpoint of pattern formation, some class of

replication of pulses. So far, there have been several studiéé)lu'[ion in reaction-diffusion equations has a relationship, in
of pulse replicationg1,6,10 ’12 18-20,22,23We may di- a pronounced way, with discrete model systems such as cel-

vide the behaviors of self-replication into five classes. lular automata. .

(i) Kerneret al. have studied theoretically self-replication Although we have focuseq our aitention on emergence of
of a motionless pulse in an excitable reaction-diffusion sys:[h.e regular frgctal structures in the present paper, more com-
tem[23]. In this case, a motionless pulse solution become licated spatiotemporal patterns such as those in Figs, 6

unstable by changing the parameters when the pulse widt (c), 6(d), and &e) should also be analyzed in further details.

exceeds a certain critical value and splits symmetrically intd . Present, we do not have any definite conclusion whether
two pulses. A similar replication is also found in the Gray- these are really chaot|_c or not. A twc_)—d|m§nS|onaI extension
Scott mode[20] would also be interesting in connection with recent study of

- - ST : . spiral breakup and wave instabilities in excitable reaction-
wid(;lh) ﬁezgarﬁg]smr%;;ﬁi;eg;ﬁﬁllgia;?%_afrmetl)r;?]t:\r)itotrh?]t ItsZiffusion media with fast inhibitor diffusiqr[24,2':'ﬂ. We
Fig. 5(b) may be included in this class. To our knowledge,Sha” report on these problems elsewhere in the near future.
this type of replication, which causes the SG's in Figh) 6
and &a), has not been reported.

(iii) A pulse increases its width monotonically and splits ~ We would like to thank Professor Y. Nishiura for a num-
into two pulses. This generates SG’s in Fig)89(a), and  ber of valuable discussions on the self-replicating pulse in
9(b). the Gray-Scott model. This work was supported by a Grant-

(iv) A propagating pulse produces a daughter pulse at thia-Aid from The Ministry of Education, Science and Culture
tail region. This has been found in the Gray-Scott modelof Japan.
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VI. DISCUSSION
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