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Self-replicating pulses and Sierpinski gaskets in excitable media
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In our previous papers, we have shown by computer simulations that a Sierpinski gasket pattern appears in
a Bonhoeffer–van der Pol type reaction-diffusion system. In this paper, we show another class of regular
self-similar structure which is found in four different excitable reaction-diffusion systems. This result strongly
implies that the existence of the self-similar spatiotemporal evolution is universal in excitable reaction-
diffusion media.

PACS number~s!: 82.40.Bj, 05.45.2a, 82.20.Mj
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I. INTRODUCTION

Recently, a rich variety of pulse dynamics have be
found in nonlinear open systems. First of all, computer sim
lations of several reaction-diffusion systems have revea
that a propagating pulse is stable upon collision with anot
pulse, that is, a pair of counterpropagating pulses underg
an elasticlike collision@1–4#. It is also possible that a puls
pair is deformed during collision but survives again just li
a soliton in an integrable nondissipative system@5,6#. It is
noted that these unexpected behaviors in nonlinear diss
tive systems occur only in a limited region of the paramete
For most of the parameter region, pulses annihilate u
collision as is usual in a dissipative system.

Another interesting property of pulses is self-replicatio
which has been observed not only in computer simulati
but also in a real experiment@7#. In the Gray-Scott model, a
motionless pulse splits into two pulses which grow and
peat self-replication until the density of pulses is sufficien
large @1,8#. A propagating pulse can also self-replicate
which a daughter pulse is emitted, known as a backfir
phenomenon@1,9#.

It is important to note that these three basic properties
pulses—pair annihilation, preservation upon collision, a
self-replication—can coexist in a small but finite parame
region. In this situation, we have shown in previous pap
@6,10# that the interplay among the three properties caus
regular self-similar spatiotemporal evolution of a trajecto
of pulses as shown in Fig. 1. Preservation is possible only
completely symmetric collision. As a result, the same pu
trajectory is generated every three generations. This is
morphic to a Sierpinski gasket~SG! generated by a cellula
automation,

at11~ i !5at~ i 21!1at~ i 11!, mod k, ~1!

whereat( i )50,1, . . . ,k21 is defined on a one-dimension
lattice. The pattern in Fig. 1 corresponds to the casek53.

It is mentioned here that Meinhardt has also been c
cerned with a connection between reaction-diffusion syste
and cellular automata in his study of biological pattern f
mation such as sea shells@11# where, however, no perfec
fractal structure has been obtained.
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The purpose of this paper is to explore how generic
formation of a regular self-similar pattern is. We will sho
that a pattern like Fig. 1 is not an exceptional one for
particular set of reaction-diffusion systems. In four differe
model systems, a self-similar pattern equivalent to Eq.~1!
with k52 will be obtained. The results definitely sugge
that the existence of a self-similar spatiotemporal evolut
is universal in excitable reaction-diffusion media.

This paper is organized as follows. In Sec. II, we intr
duce the Bonhoeffer–van der Pol~BvP! type reaction-
diffusion system with a cubic nonlinear term. It is shown th
both the traveling pulse and the breathing pulse undergo s
replication, which causes generally complex spatiotempo
patterns. However, we show that, if one tunes the para
eters, SG withk52 emerges.

In Sec. III, we investigate the BvP model with a hype
bolic tangent nonlinear term. An SG withk53 in Fig. 1 was
generated by this model@6,10#. We show, however, that fo
different values of the parameters an SG withk52 is also
realized in this model.

In Sec. IV, we carry out numerical simulations of th
Gray-Scott model and obtain an SG withk52. In Sec. V, we
investigate the Prague model, which was introduced to st
self-replicating waves observed in the Belousov-Zhabotin

FIG. 1. Spatiotemporal pattern of interacting pulses in the B
model equations with a hyperbolic nonlinear term wherea50.1,
g50, d50.05,t50.34, I 50, Dv510, andDu51. The lines indi-
cate the contour line ofu50.2. The quantities in this and all othe
figures below are dimensionless.
5998 ©2000 The American Physical Society
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PRE 62 5999SELF-REPLICATING PULSES AND SIERPINSKI . . .
reaction@12#. Numerical simulations of this model show th
an SG withk52 exists in a small parameter region. In all
the simulations in Sec. II–V, the Neumann boundary con
tions are used at the system boundaries. Finally, in Sec.
we give a discussion of our results.

II. BvP MODEL WITH A CUBIC NONLINEARITY

A. Model equation

In our previous papers@6,10#, we have reported that
regular self-similar spatiotemporal pattern like an SG
pears in Bonhoeffer–van der Pol type reaction-diffus
equations,

t
]u

]t
5Du

]2u

]x2 1 f ~u!2v, ~2!

]v
]t

5Dv

]2v
]x2 1u2gv1I , ~3!

whereDu.0 andDv.0 are the diffusion rates ofu andv,
respectively. The parameterst, g, and I are assumed to b
positive. In this section, we shall explore the pulse dynam
of the BvP model~2! and ~3! with the cubic nonlinearity

f ~u!5au~u11!~12u!, ~4!

where a is a positive constant. The parameters are cho
such that the system Eqs.~2! and ~3! with Eq. ~4! is excit-
able. Throughout this section, we setDu51, Dv510, a55,
andg50.25, and examine the behavior of pulses by cha
ing the values oft and I.

In the spatially homogeneous case, the set of Eqs.~2! and
~3! with Eq. ~4! has a subcritical Hopf bifurcation pointI
[I h such that a limit cycle solution appears whenI ,I h .
Our concern is the caseI .I h , where the system is excitable

Equations~2! and ~3! with Eq. ~4! have been studied in
detail theoretically@13–15#. As shown in Fig. 2, there are
three bifurcation points by changing the parameterst. A
traveling pulse is stable fort,tp , while a motionless pulse
is stable fort.tm . In the present choice of the paramete
tp is always smaller thantm . The dependence oftp andtm
on I is schematically shown in Fig. 2. There is another s
cial valuetb such that a motionless pulse loses stability a
undergoes a breathing motion in the intervaltb,t,tm .

It should be noted that there is an intervaltp,t,tb
where neither the breathing pulse nor the traveling pulse
ists as a stationary state. This is the very region where s

FIG. 2. The phase diagram in theI -t plane.
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replication of pulses is observed and hence rich varietie
spatiotemporal patterns appear as described below.

B. Self-replication of pulses

We have carried out numerical simulations of Eqs.~2! and
~3! with Eq. ~4! in the regiontp,t,tb shown in Fig. 2. The
time mesh is 0.001 while the space mesh is 0.25.

We provide a stable breathing pulse att*tb and then
change the parametert to t&tb . The result forI 50.2 and
t50.53 is shown in Fig. 3~a!, where one can see that a pul
breathes for a finite time and vanishes by collision of tw
interfaces of the pulse.

However, whenI is close to the Hopf bifurcation thresh
old I h , a breathing pulse splits into two pulses. An exam
is shown in Fig. 3~b! for I 50.1 andt50.59. It is evident
that when the width of the breathing pulse becomes ma
mum, the value ofu in the middle of the pulse decrease
rapidly so that replication occurs.

The long-time behavior of simulations of Fig. 3~b! is
shown in Figs. 4~a! and 4~b!, which display spatiotempora
evolutions of pulses. In Fig. 4~a! for t50.59, breathing
pulses disappear after a few times of self-replicating. Wh
t50.58, Fig. 4~b! shows that breathing pulses repeat t
self-replicating process without extinction so that the num
of pulses increases in time.

A traveling pulse fort*tp behaves similarly. We pro-
vide a pulse fort&tp . This pulse propagates for some fini
interval after an abrupt increase oft larger thantp . During
propagation, the pulse changes its shape to a symmetric
and then either vanishes or self-replicates depending on
parameters. WhenI is much larger thanI h , the pulse van-

FIG. 3. ~a! Annihilation of an oscillating pulse forI 50.2,t
50.53 (tb50.54). ~b! Self-replication of an oscillating pulse fo
I 50.1,t50.59 (tb50.60). The lines indicate the profile ofu.

FIG. 4. Spatiotemporal pattern for~a! t50.59 and ~b! t
50.58. Other parameters are the same as those in Fig. 3~b!. The
lines indicate the contour line ofu50.
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6000 PRE 62YUMINO HAYASE AND TAKAO OHTA
ishes as shown in Fig. 5~a! for I 50.3 andt50.28. WhenI is
close to I h , self-replication occurs as in Fig. 5~b! for I
50.1 andt50.44.

Figure 6~a! shows a spatiotemporal pattern of se
replicating traveling pulses for the same parameters a
Fig. 5~b!. The initial condition is a motionless pulse gene
ated fort51. It can be seen that self-replication of travelin
pulses occurs irregularly. The self-replicating pulses ann
late or reflect upon collision so that an apparently chao
spatiotemporal pattern appears.

C. Regular self-similar patterns

When the value oft is in the middle of the regiontp
,t,tb for I *I h , we obtain a regular self-similar pattern a
shown in Fig. 6~b!. Here, we have used the same initial co
dition as in Fig. 6~a!.

Note that the SG in Fig. 6~b! differs from Fig. 1. The most
crucial property is that preservation of pulses does not e
in Fig. 6~b!. All of the pulses undergo pair annihilation upo
collision so that the same trajectory of the pulses appe
every two generations. The SG in Fig. 6~b! is equivalent with
Eq. ~1! with k52.

The SG in Fig. 6~b! is robust in comparison with othe
irregular spatiotemporal patterns. For example, the patter
Fig. 6~a! is not reproduced when we add a noise to the ini
conditions and thus it is sensitive to the initial condition

FIG. 5. Self-replication of a traveling pulse for~a! I 50.3,t
50.28 (tp50.27) and~b! I 50.1,t50.44 (tp50.43). The lines
indicate the contour line ofu50.

FIG. 6. Spatiotemporal pattern for~a! t50.44, ~b! t50.50, ~c!
t50.48, and~d! t50.51. ~e! Collision of two SG’s starting with
two pulses atx5600 and 1000. The parameters are the same a
Fig. ~b!. ~f! Periodic pattern fort50.34, I 50.15, a54, g50.3,
Du51, andDv510. The lines indicate the contour line ofu50.
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However, we have verified that the SG in Fig. 6~b! survives
even for initial conditions deformed by noise. Furthermo
an asymmetric initial profile like a traveling pulse also pr
duces the same SG. It seems that any localized pulse w
magnitude is larger than a certain threshold produces the

The SG in Fig. 6~b! exists in the parameter region 0.4
<t<0.50 with the other parameters fixed as in Fig. 6~a!.
Outside of this region, the self-similarity does not last inde
nitely as shown in Fig. 6~c! for t50.48 and in Fig. 6~d! for
t50.51.

We have also examined collision of two SG domain
Figure 6~e! displays the result where we start with the sam
parameters as in Fig. 6~b!. The SG is generally destroyed b
the collision causing complicated evolution of pulses. On
when two pulses are at a particular distance initially is
SG preserved after collision.

We make a final remark that a regular pattern a
emerges in the intervaltp,t,tb although it is not self-
similar. One example is shown in Fig. 6~f! for a54 andg
50.3 and for the initial conditionu(x,0)52 exp(2x2)1u0
andv(x,0)5v0 with the equilibrium uniform valuesu0 and
v0 . After an initial transient, the system enters a cycle
which a branched pattern is generated repeatedly.

III. BvP MODEL WITH A HYPERBOLIC TANGENT
NONLINEARITY

In the preceding section, we have obtained an SG w
k52 in the excitable system~2! and~3! with Eq. ~4!. This is
quite in contrast to our previous result that an SG withk
53 was obtained in Eqs.~2! and ~3! with a hyperbolic tan-
gent nonlinearity,

f ~u!5
1

2 S tanh
u2a

d
1tanh

a

d D2u, ~5!

wherea and d are positive constants. The essential diffe
ence is that Eqs.~2! and ~3! with Eq. ~5! are bistable in the
sense that a stable uniform solution and a stable limit cy
solution coexist@6,10,16#.

In this section, we will show that an SG withk52 can be
realized even for the hyperbolic tangent nonlinearity. Wh
g50 in Eq.~3!, the system is bistable in the above sense a
a pulse self-replicates as shown in Fig. 7~a!, where a pulse
becomes small for a short period@17# and survives again
splitting into two pulses. The SG withk53 in Fig. 1 was
obtained in this situation@6#. On the other hand, wheng

in

FIG. 7. Self-replication of a pulse in the BvP model with
hyperbolic nonlinear term. The parameters are~a! a50.1, g50,
d50.05, t50.34, I 50, Dv510, and Du51; ~b! a50.105, g
50.21,d50.05,t50.4, I 50, Dv510.5, andDu51.
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50.21 andt50.4, a pulse self-replicates as in Fig. 7~b!. It
should be noted that this behavior of self-replication is qu
tatively different from that in Fig. 7~a! but quite similar to
those in Figs. 3~b! or 5~b!.

We have carried out numerical simulations of Eqs.~2! and
~3! with Eq. ~5! in the parameter region where the se
replication occurs as in Fig. 7~b!. Other parameters are cho
sen to be almost the same as the SG withk53. An SG with
k52 is really obtained as shown in Fig. 8~a!. The time mesh
is 0.001 and the space mesh is 0.125 for these computat

Thus, we have obtained two SG’s withk52 as in Figs.
6~b! and 8~a!. However, it is remarked that there is a sm
difference in these figures. By looking at the contour lines
u, one notes that a pulse in Fig. 6~b! splits into two during
the first breathing oscillation whereas a pulse in Fig. 8~a!
self-replicates during the second oscillation.

IV. GRAY-SCOTT MODEL

In Secs. II and III, we have shown that SG’s withk52
appear in the BvP model having two different nonline
terms. Here, it will be shown that an SG emerges in
Gray-Scott model given by the following set of equations

]u

]t
5Du

]2u

]x2 2uv21F~12u!, ~6!

]v
]t

5Dv

]2v
]x2 1uv22~F1k!v, ~7!

whereDu.0 andDv.0 are the diffusion coefficients. W
assume thatF andk are positive constants.

Self-replication of a pulse in the Gray-Scott model h
been studied both numerically and analytically@1,8,18,19#.
However, the spatiotemporal evolution of the interacti
pulses has not attracted much attention because almost
the previous studies focused on the parameters such
there is a repulsive interaction between pulses. Hence,
system approaches a time-independent state asymptotic

It has been found, however, that there is a small region
the parameters where pulses annihilate upon collision a

FIG. 8. ~a! SG with k52 for the BvP model with a hyperbolic
nonlinear term. The parameters area50.105, g50.21, d50.05,
t50.4,Dv510.5, andDu51. The lines indicate the contour line o
u50. ~b! SG with k52 for the Gray-Scott model. The paramete
are F50.0253,k50.0525,Du51.1531025, andDv51.031025.
The lines indicate the contour line ofu50.5.
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chaotic pattern emerges@20#. We carry out simulations of
Eqs.~6! and ~7! in this parameter region but with a slightl
different value ofDu and Dv . Actually, in Ref. @20#, these
are set to beDu5231025 andDv51025. We could not find
any SG for these values of the diffusion constants. In
present study, we choseDu51.1531025 andDv51025. As
shown in Fig. 8~b!, we obtain an SG withk52 for F
50.0253 andk50.0525. The same SG is obtained forDu
51.1631025 without changing the other parameters. T
initial condition is such thatu50.5 andv51 just at the
center of the system andu51 andv50 otherwise. The time
mesh is 0.1 and the space mesh is 0.01.

The SG shown in Fig. 8~b! corresponds to a cellular au
tomaton~1! with k52. A question arises whether an SG wi
k53 is possible in the Gray-Scott model or not as in the B
model with a hyperbolic tangent nonlinearity. A necessa
condition for an SG withk53 is the coexistence of pai
annihilation, self-replication, and preservation of pulses@10#.
We have confirmed that there is a parameter region in
Gray-Scott model where these basic properties coexist. H
ever, we have not succeeded in realizing an SG withk53 in
the Gray-Scott model. This is due to the fact that the inter
during a collision~phase shift! is substantially longer than
that of self-replication. This unbalance of the two time inte
vals makes the formation of SG withk53 impossible. On
the other hand, in the BvP equation with a hyperbolic no
linearity, these two time intervals are almost the same so
a self-replication repeats coherently with preservation at e
generation.

V. PRAGUE MODEL

The fourth example of an excitable system where an
appears is the following two-component reaction-diffusi
model:

]u

]t
5

]2u

]x2 1
1

e
u@c2u1~12c!v#S u2

v1b

a D , ~8!

]v
]t

5D
]2v
]x2 1u2v, ~9!

whereD.0 is the diffusion coefficient anda, b, c, ande are
positive constants. We call this model the Prague model

Marek et al. @12# have introduced Eqs.~8! and ~9! to
study numerically the splitting of a reduction wave in th
Belousov-Zhabotinsky reaction. They have found that s
replication of pulses occurs fora50.99, b50.01, c50.2,
D51, ande50.01. Here, we investigate the behavior of t
Prague model by changing the values ofD and e. An SG
with k52 appears forD51.2 ande50.009 as shown in Fig
9~a!. The initial condition isu(x,0)5exp(2x2) and v(x,0)
50. The time mesh is 0.001 and the space mesh is 0.25

When the diffusion constantD in Eq. ~9! is decreased, one
has an entirely different pulse dynamics. Pulses do not
dergo pair annihilation upon collision. For instance, wh
D50.5 ~ande50.01!, we have the spatiotemporal evolutio
in Fig. 9~b! where preservation of pulses is repeated so th
regular periodic pattern is formed. This pattern correspo
to the cellular automaton~1! with k5`.
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VI. DISCUSSION

In this paper, we have shown by numerical simulatio
that a Sierpinski gasket pattern withk52 can be produced in
four different excitable reaction-diffusion systems:~i! the
BvP model with a cubic nonlinear term,~ii ! the BvP model
with a hyperbolic tangent nonlinear term,~iii ! the Gray-Scott
model, and~iv! the Prague model. We expect from the
results that the SG is very common to excitable media@21#.

It is definite that an SG cannot be realized without se
replication of pulses. So far, there have been several stu
of pulse replications@1,6,10,12,18–20,22,23#. We may di-
vide the behaviors of self-replication into five classes.

~i! Kerneret al. have studied theoretically self-replicatio
of a motionless pulse in an excitable reaction-diffusion s
tem @23#. In this case, a motionless pulse solution becom
unstable by changing the parameters when the pulse w
exceeds a certain critical value and splits symmetrically i
two pulses. A similar replication is also found in the Gra
Scott model@20#.

~ii ! A breathing pulse self-replicates at the instant that
width becomes maximum as in Fig. 3~b!. The behavior in
Fig. 5~b! may be included in this class. To our knowledg
this type of replication, which causes the SG’s in Figs. 6~b!
and 8~a!, has not been reported.

~iii ! A pulse increases its width monotonically and spl
into two pulses. This generates SG’s in Figs. 8~b!, 9~a!, and
9~b!.

~iv! A propagating pulse produces a daughter pulse at
tail region. This has been found in the Gray-Scott mo

FIG. 9. ~a! SG withk52 for the Prague model. The paramete
area50.99,b50.01,c50.2,D51.2, ande50.009.~b! Spatiotem-
poral pattern for the Prague model. The parameters area50.99,b
50.01,c50.2,D50.5, ande50.01. The lines indicate the contou
line of u50.2.
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@1,8# and an exothermic reaction-diffusion model@9#.
~v! A pulse becomes very small and then two puls

emerge. This type of self-replication occurs in the B
model with a hyperbolic tangent nonlinearity as shown
Fig. 7~a! and is an origin of SG in Fig. 1.

At present, theoretical analysis of these self-replicatio
has not been developed. Therefore, we do not exclude
possibility that some of the above classes can be related
each other and be unified eventually.

We have classified five types of self-replication
reaction-diffusion systems. It should be mentioned, howev
that even when a self-replication occurs, a spatiotemp
pattern does not always become an SG. A key factor for
SG withk52 is the successive appearance of the same s
replication. This can be understood by looking at Fig. 6~c!,
where an SG is not generated. One notes that the conto
the pulses at either end gradually changes in time. In or
for an SG to be realized, pulses generated by self-replica
must obey the same dynamic motion as the mother pu
This is the reason why one has to tune the paramete
produce an SG.

As was mentioned in the Introduction, a related study h
been done by Meinhardt@11#. However, we emphasize tha
the various beautiful shell patterns obtained by Meinhard
reaction-diffusion systems are neither perfectly regular
self-similar. What we have shown in the present paper is
excitable reaction-diffusion systems are capable of gene
ing a regular self-similar spatiotemporal pattern. This impl
that, from the viewpoint of pattern formation, some class
solution in reaction-diffusion equations has a relationship
a pronounced way, with discrete model systems such as
lular automata.

Although we have focused our attention on emergence
the regular fractal structures in the present paper, more c
plicated spatiotemporal patterns such as those in Figs. 6~a!,
6~c!, 6~d!, and 6~e! should also be analyzed in further detai
At present, we do not have any definite conclusion whet
these are really chaotic or not. A two-dimensional extens
would also be interesting in connection with recent study
spiral breakup and wave instabilities in excitable reactio
diffusion media with fast inhibitor diffusion@24,25#. We
shall report on these problems elsewhere in the near fut
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